Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Chin Med J (Engl) ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38595093

ABSTRACT

ABSTRACT: B7-H3 (CD276), an immune checkpoint protein of the B7 family, exhibits significant upregulation in solid tumors and hematologic malignancies, exerting a crucial role in their pathophysiology. The distinct differential expression of B7-H3 between tumors and normal tissues and its multifaceted involvement in tumor pathogenesis position it as a promising therapeutic target for tumors. In the context of acute myeloid leukemia (AML), B7-H3 is prominently overexpressed and closely associated with unfavorable prognoses, yet it has remained understudied. Despite various ongoing clinical trials demonstrating the potential efficacy of immunotherapies targeting B7-H3, the precise underlying mechanisms responsible for B7-H3-mediated proliferation and immune evasion in AML remain enigmatic. In view of this, we comprehensively outline the current research progress concerning B7-H3 in AML, encompassing in-depth discussions on its structural attributes, receptor interactions, expression profiles, and biological significance in normal tissues and AML. Moreover, we delve into the protumor effects of B7-H3 in AML, examine the intricate mechanisms that underlie its function, and discuss the emerging application of B7-H3-targeted therapy in AML treatment. By juxtaposing B7-H3 with other molecules within the B7 family, this review emphasizes the distinctive advantages of B7-H3, not only as a valuable prognostic biomarker but also as a highly promising immunotherapeutic target in AML.

3.
Med Image Anal ; 94: 103158, 2024 May.
Article in English | MEDLINE | ID: mdl-38569379

ABSTRACT

Magnetic resonance (MR) images collected in 2D clinical protocols typically have large inter-slice spacing, resulting in high in-plane resolution and reduced through-plane resolution. Super-resolution technique can enhance the through-plane resolution of MR images to facilitate downstream visualization and computer-aided diagnosis. However, most existing works train the super-resolution network at a fixed scaling factor, which is not friendly to clinical scenes of varying inter-slice spacing in MR scanning. Inspired by the recent progress in implicit neural representation, we propose a Spatial Attention-based Implicit Neural Representation (SA-INR) network for arbitrary reduction of MR inter-slice spacing. The SA-INR aims to represent an MR image as a continuous implicit function of 3D coordinates. In this way, the SA-INR can reconstruct the MR image with arbitrary inter-slice spacing by continuously sampling the coordinates in 3D space. In particular, a local-aware spatial attention operation is introduced to model nearby voxels and their affinity more accurately in a larger receptive field. Meanwhile, to improve the computational efficiency, a gradient-guided gating mask is proposed for applying the local-aware spatial attention to selected areas only. We evaluate our method on the public HCP-1200 dataset and the clinical knee MR dataset to demonstrate its superiority over other existing methods.


Subject(s)
Diagnosis, Computer-Assisted , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Knee Joint , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
4.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607121

ABSTRACT

The magnetization mechanism of Co-doped BaTiO3 ultrathin films is a subject of debate, which results in difficulties with the design of new multiferroics based on BaTiO3 matrixes. With the aid of a first-principles approach, it was observed that when the interstitial site and Ti vacancy were filled with Co, the configuration behaved in a nonmagnetic manner, indicating the significance of the Co content. Moreover, in the case of Co substituting two neighboring Ti atoms, when a direct current field was applied in the [100] direction, the magnetic domains excluding those in the [100], [010], and [001] directions were directed away. Further, the magnetoelectric constant was evaluated at ~449.3 mV/cmOe, showing strong magnetoelectric coupling at room temperature. Clearly, our study indicates that strict control of Ba, Ti, O, and Co stoichiometry can induce an electric and magnetic field conversion in two-dimensional BaTiO3 and may provide a new candidate for single-phase multiferroics for application in next-generation multifunctional devices.

5.
Stress Health ; : e3412, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651677

ABSTRACT

Infertility can be stressful for infertile couples. This study aims to examine the intra-dyadic associations between stigma, communication patterns, and infertility-related stress in couples undergoing artificial insemination by donor semen (AID). This cross-sectional study was conducted from January to April 2021. Two hundred and three couples undergoing AID were recruited from a reproductive centre in China. All of the couples completed a two-item stigma questionnaire, Communication Pattern Questionnaire, and Fertility Problem Inventory. The actor-partner interdependence mediation analysis was performed using AMOS 23.0. The analysis demonstrated significant actor-actor effects for couples undergoing AID. More specifically, higher levels of stigma among wives and husbands were associated with more negative communication patterns, thereby increasing their own infertility-related stress. Simultaneously, there was a significant partner-actor effect among infertile wives, demonstrating that the husband's stigma can affect his wife's infertility-related stress by influencing her communication patterns. Couples undergoing AID experience increased infertility-related stress when they have high levels of stigma and negative communication patterns, and husbands' stigma is correlated to wives' communication patterns. Therefore, dyadic interventions aiming to improving stigma and enhancing positive communication may be conducive to reducing infertility-related stress.

6.
Nature ; 627(8005): 789-796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538940

ABSTRACT

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

7.
J Transl Med ; 22(1): 244, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448996

ABSTRACT

AIMS: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis. In light of this, our objective is to develop a prediction model for EBV infection following allo-HSCT. METHODS: A total of 466 patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) between September 2019 and December 2020 were included in this study. The patients were divided into a development cohort and a validation cohort based on the timing of their transplantation. Our aim was to develop and validate a grading scale using these cohorts to predict the risk of EBV infection within the first year after haplo-HSCT. Additionally, single-cell RNA sequencing (sc-RNAseq) data from the bone marrow of healthy donors were utilized to assess the impact of age on immune cells and viral infection. RESULTS: In the multivariate logistic regression model, four predictors were retained: donor age, female-to-male transplant, graft MNC (mononuclear cell) dose, and CD8 dose. Based on these predictors, an EBV reactivation predicting score system was constructed. The scoring system demonstrated good calibration in both the derivation and validation cohorts, as confirmed by the Hosmer-Lemeshow test (p > 0.05). The scoring system also exhibited favorable discriminative ability, as indicated by the C statistics of 0.72 in the derivation cohort and 0.60 in the validation cohort. Furthermore, the clinical efficacy of the scoring system was evaluated using Kaplan-Meier curves based on risk ratings. The results showed significant differences in EBV reactivation rates between different risk groups, with p-values less than 0.001 in both the derivation and validation cohorts, indicating robust clinical utility. The analysis of sc-RNAseq data from the bone marrow of healthy donors revealed that older age had a profound impact on the quantity and quality of immune subsets. Functional enrichment analysis highlighted that older age was associated with a higher risk of infection. Specifically, CD8 + T cells from older individuals showed enrichment in the pathway of "viral carcinogenesis", while older CD14 + monocytes exhibited enrichment in the pathway of "regulation of viral entry into host cell." These findings suggest that older age may contribute to an increased susceptibility to viral infections, as evidenced by the altered immune profiles observed in the sc-RNAseq data. CONCLUSION: Overall, these results demonstrate the development and validation of an effective scoring system for predicting EBV reactivation after haplo-HSCT, and provide insights into the impact of age on immune subsets and viral infection susceptibility based on sc-RNAseq analysis of healthy donors' bone marrow.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Humans , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Antiviral Agents , CD8-Positive T-Lymphocytes , Calibration
8.
PLoS One ; 19(3): e0298262, 2024.
Article in English | MEDLINE | ID: mdl-38547234

ABSTRACT

MCF7 cells have been used as an experimental model for breast cancer for decades. Typically, a culture medium is designed to supply cells with the nutrients essential for their continuous proliferation. Each medium has a specific nutritional composition. Therefore, cells cultured in different media may exhibit differences in their metabolism. However, only a few studies have investigated the effects of media on cells. In this study, we compared the effects of Dulbecco's modified Eagle medium (DMEM) and minimum essential medium alpha modification (αMEM) on MCF7 cells. The two media differentially affected the morphology, cell cycle, and proliferation of MCF7 cells, but had no effect on cell death. Replacement of DMEM with αMEM led to a decrease in ATP production and an increase in reactive oxygen species production, but did not affect the cell viability. RNA-sequencing and bioinformatic analyses revealed 721 significantly upregulated and 1247 downregulated genes in cells cultured in αMEM for 48 h compared with that in cells cultured in DMEM. The enriched gene ontology terms were related to mitosis and cell proliferation. Kyoto encyclopedia of genes and genomes analysis revealed cell cycle and DNA replication as the top two significant pathways. MCF7 cells were hypoxic when cultured in αMEM. These results show that the culture medium considerably affects cultured cells. Thus, the stability of the culture system in a study is very important to obtain reliable results.


Subject(s)
Transcriptome , Humans , MCF-7 Cells , Cells, Cultured , Cell Proliferation , Cell Survival , Culture Media/pharmacology
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 331-334, 2024 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-38448024

ABSTRACT

OBJECTIVE: To explore the genetic etiology of two patients with Gitelman syndrome (GS). METHODS: Two patients who had presented at the Linyi People's Hospital in January and June 2022 respectively were selected as the study subjects. Peripheral blood samples of them were collected and subjected to whole exome sequencing (WES). Electrolyte levels in their serum and urine were detected. Candidate variants were verified by Sanger sequencing. PyMOL software was used to predict the impact of the variants on the protein structure. RESULTS: Patient 1 was a 27-year-old female with decreased serum levels of sodium, potassium, chloride and magnesium, along with decreased urine chloride and calcium. WES revealed that she has harbored compound heterozygous variants of the SLC12A3 gene, namely c.1456G>A (p.D486N) and c.179C>T (p.T60M). The former was inherited from her mother and known to be pathogenic. Patient 2 was a 4-year-old male with lower serum sodium, chloride and magnesium levels, and his serum potassium level was found to be critically low. He was found to harbor compound heterozygous variants of c.602-16G>A and c.805_806insTTGGCGTGGTCTCGGTCA (p.V268_T269insIGVVSV) of the SLC12A3 gene, which were inherited from his mother and father, respectively. Based on the guidelines from the American College of Medical Genetics and Genomics, both variants were predicted to be pathogenic (PVS1+PM2_Supporting+PP3; PVS1+PM2_Supporting+PM4). CONCLUSION: The above heterozygous variants of the SLC12A3 gene probably underlay the GS in these patients.


Subject(s)
Gitelman Syndrome , Humans , Female , Male , Adult , Child, Preschool , Gitelman Syndrome/genetics , Chlorides , Magnesium , Potassium , Sodium , Solute Carrier Family 12, Member 3/genetics
10.
Adv Sci (Weinh) ; : e2309648, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483885

ABSTRACT

Multi-foci lenses are essential components for optical communications, virtual reality display and microscopy, yet the bulkiness of conventional counterparts has significantly hindered their widespread applications. Benefiting from the unprecedented capability of metasurfaces in light modulation, metalenses are able to provide multi-foci functionality with a more compact footprint. However, achieving imaging quality comparable to that of corresponding single-foci metalenses at each focal point poses a challenge for existing multi-foci metalenses. Here, a polarization-independent all-dielectric multi-foci metalens is proposed and experimentally demonstrated by spatially integrating single-foci optical sparse-aperture sub-metalenses. Such design enables the metalens to generate multiple focal points, while maintaining the ability to capture target information comparable to that of a single-foci metalens. The proposed multi-foci metalens is composed of square-nanohole units array fabricated by two-photon polymerization. The focusing characteristic and imaging capability are demonstrated upon the illumination of an unpolarized light beam. This work finds a novel route toward multi-foci metalenses and may open a new avenue for dealing with the trade-off between multi-foci functionality and high-quality imaging performance.

11.
Food Chem ; 446: 138791, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38422638

ABSTRACT

Acid-sensitive CdTe quantum dots-loaded alginate hydrogel (CdTe QDs-AH) beads were designed for the visual detection of SO2 residues. As proof of concept, two types of CdTe QDs were selected as model probes and embedded in AH beads. The entire test was performed within 25 min in a modified double-layer test tube with one bead fixed above the sample solution. Adding citric acid and heating at 70 ℃ for 20 min transformed the sulfites in the solution into SO2 gas, which then quenched the fluorescence of the CdTe QDs-AH beads. Using this assay, qualitative, naked-eye detection of SO2 residues was achieved in the concentration range of 25-300 ppm, as well as precise quantification was possible based on the difference in the average fluorescence brightness of the beads before and after the reaction. Five food types were successfully analysed using this method, which is simpler and more economical than existing methods, and does not require complex pretreatment.


Subject(s)
Cadmium Compounds , Quantum Dots , Quantum Dots/chemistry , Sulfur Dioxide , Cadmium Compounds/chemistry , Hydrogels , Tellurium/chemistry , Spectrometry, Fluorescence/methods
12.
Plant J ; 118(2): 457-468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38198228

ABSTRACT

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Subject(s)
Oxidoreductases , Zea mays , Humans , Oxidoreductases/genetics , Oxidoreductases/metabolism , Zea mays/genetics , Zea mays/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Plastids/genetics , Plastids/metabolism
13.
Sci Total Environ ; 916: 170324, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266725

ABSTRACT

Bamboo heat treatment will cause plenty of release of volatile organic compounds (VOCs) into the atmosphere which are important precursors for ozone (O3) formation. In this study, dewaxed bamboo was heat-treated at 180 °C for 2 h to investigate the emission characteristics and the formation pathways of VOCs during heat treatment by removing different main components. The results showed that aldehydes (22.61%-57.54%) and esters (14.64%-38.88%) are the primary VOCs released during heat treatment. These compounds mainly originate from the degradation of hemicellulose, lignin, cellulose, and the linkage bonds between them in bamboo. During the bamboo heat treatment, the degradation of CO, CH, and CO bonds in hemicellulose results in the release of 5-hydroxymethylfurfural, 3-furfural, and 1-(+)-ascorbic acid 2,6-dihexadecanoate. The breakage of benzene ring group and the CO and CH bonds of lignin leading to the emission of VOCs including m-Formylphenol, Vanillin, and Syringaldehyde. The degradation of aliphatic CH, CC, and CO bonds in the amorphous region of cellulose contributes to an enhanced release of alcohols, olefins, and alkanes. It is calculated that acids (28.92%-59.47%), esters (10.10%-22.03%) and aldehydes (17.88%-39.91%) released during heat treatment contributed more to Ozone Formation Potential (OFP).


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Lignin , Hot Temperature , Cellulose , Aldehydes , Ozone/analysis , Poaceae , Environmental Monitoring/methods , China
14.
Bone Marrow Transplant ; 59(4): 496-504, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38267585

ABSTRACT

Adult T-cell acute lymphoblastic leukemia (T-ALL) is highly aggressive with poor prognoses, while hematopoietic stem cell transplantation (HSCT) is a curable option. However, no transplant-specific prognostic model for adult T-ALL is available. We identified 301 adult T-ALL patients who received HSCT at our hospital between 2010 and 2022. These patients were randomly assigned at a 7:3 ratio to a derivation group of 210 patients and a validation group of 91 patients. Next, we developed a prognostic risk score system for adult T-ALL with HSCT, which we named COMM, including 4 predictors (central nervous system involvement, Non-CR1 (CR2+ or NR) at HSCT, minimal residual disease (MRD) ≥ 0.01% after first induction therapy, and MRD ≥ 0.01% before HSCT). Patients were categorized into three risk groups, low-risk (0), intermediate-risk (1-4), and high-risk (5-12), and their 3-year overall survival (OS) were 87.5% (95%CI, 78-93%), 65.7% (95%CI, 53-76%) and 20% (95%CI, 10-20%; P < 0.001), respectively. The area under the subject operating characteristic curve for 2-, 3- or 5-year OS in the derivation cohort and in the validation cohort were all greater than 0.75. Based on internal validation, COMM score system proved to be a reliable prognostic model that could discriminate and calibrate well. We expect that the first prognostic model in adults T-ALL after HSCT can provide a reference of prognostic consultation for patients and families, and also contribute to future research to develop risk adapted interventions for high-risk populations.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Neoplasm, Residual/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Retrospective Studies , T-Lymphocytes
15.
Sensors (Basel) ; 24(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257491

ABSTRACT

Atrial fibrillation, one of the most common persistent cardiac arrhythmias globally, is known for its rapid and irregular atrial rhythms. This study integrates the temporal convolutional network (TCN) and residual network (ResNet) frameworks to effectively classify atrial fibrillation in single-lead ECGs, thereby enhancing the application of neural networks in this field. Our model demonstrated significant success in detecting atrial fibrillation, with experimental results showing an accuracy rate of 97% and an F1 score of 87%. These figures indicate the model's exceptional performance in identifying both majority and minority classes, reflecting its balanced and accurate classification capability. This research offers new perspectives and tools for diagnosis and treatment in cardiology, grounded in advanced neural network technology.


Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/diagnosis , Electrocardiography , Neural Networks, Computer , Technology
16.
Small ; : e2311700, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287730

ABSTRACT

A variety of inorganic and inorganic cathode materials for chloride ion storage are reported. However, their application in chloride ion batteries (CIB) is hindered by poor rate capability and cycling stability. Herein, an organic poly(butyl viologen dichloride) (PBVCl2 ) cathode material with significantly enhanced rate and cycling performance in the CIB is achieved using a crown ether (18-Crown-6) additive in the tributylmethylammonium chloride-based electrolyte. The as-prepared PBVCl2 cathodes exhibit impressive capacity increases from 149.4 to 179.1 mAh g-1 at 0.1 C and from 57.8 to 111.9 mAh g-1 at 10 C, demonstrating the best rate performance with the highest energy density among those of various reported cathodes for CIBs. This impressive performance improvement is a result of the great boosts in charge transfer, ion transport, and interface stability of the battery by the use of 18-Crown-6, which also contributes to a more than twofold increase in capacity retention after 120 cycles. The electrode reaction mechanism of the CIB based on highly reversible chloride ion transfer is revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.

17.
Medicine (Baltimore) ; 103(3): e36943, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241555

ABSTRACT

To investigate the expression of Bax and Bcl2 protein in peripheral blood mononuclear cells (PBMC) of patients with chronic heart failure (CHF), and to analyze their value for predicting major adverse cardiovascular event (MACE) in CHF patients. A total of 154 fasting venous blood samples from CHF patients were collected in our hospital from January 2017 to June 2019, and they were divided into 2 group according to whether MACE occurred during 3 years follow-up, MACE group and No-MACE group. Levels of Bax and Bcl2 protein expression in PBMC of CHF patients using enzyme-linked immunosorbent assay (ELISA), and then evaluated the predictive power of Bax and Bcl2 expression for MACE using logistic regression analysis and ROC curve. 62 (40.26%) of 154 CHF patients occurred MACE during follow-up, and there were significant differences in age, diabetes, LVEF, LDL-C and NYHA grade between MACE group and No-MACE group. Levels of Bax protein expression in PBMC of CHF patients in MACE group were significantly higher than those in No-MACE group, while levels of Bcl2 protein expression were significantly lower than those in No-MACE group, and Bax and Bcl2 protein levels increased and decreased with NYHA grades in MACE group and No-MACE group, respectively. Results of univariate and multivariate logistic regression analysis showed that Bax (OR, 1.026; 95% CI, 1.003-1.049; P = .027) and Bcl2 levels (OR, 0.952; 95% CI, 0.908-0.998; P = .041) were independent predictive factors for MACE in CHF patients. In addition, Bax and Bcl2 levels could be used to differentiate CHF patients at risk for MACE with an AUC of 0.744 (95% CI: 0.660-0.827) and an AUC of 0.743 (95% CI: 0.667-0.819), respectively. Levels of Bax and Bcl2 protein in PBMC could be used as independent predictive factors for MACE in CHF patients.


Subject(s)
Heart Failure , Leukocytes, Mononuclear , Humans , bcl-2-Associated X Protein , Leukocytes, Mononuclear/metabolism , Prognosis
18.
Comput Med Imaging Graph ; 112: 102325, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228021

ABSTRACT

Automatic brain segmentation of magnetic resonance images (MRIs) from severe traumatic brain injury (sTBI) patients is critical for brain abnormality assessments and brain network analysis. Construction of sTBI brain segmentation model requires manually annotated MR scans of sTBI patients, which becomes a challenging problem as it is quite impractical to implement sufficient annotations for sTBI images with large deformations and lesion erosion. Data augmentation techniques can be applied to alleviate the issue of limited training samples. However, conventional data augmentation strategies such as spatial and intensity transformation are unable to synthesize the deformation and lesions in traumatic brains, which limits the performance of the subsequent segmentation task. To address these issues, we propose a novel medical image inpainting model named sTBI-GAN to synthesize labeled sTBI MR scans by adversarial inpainting. The main strength of our sTBI-GAN method is that it can generate sTBI images and corresponding labels simultaneously, which has not been achieved in previous inpainting methods for medical images. We first generate the inpainted image under the guidance of edge information following a coarse-to-fine manner, and then the synthesized MR image is used as the prior for label inpainting. Furthermore, we introduce a registration-based template augmentation pipeline to increase the diversity of the synthesized image pairs and enhance the capacity of data augmentation. Experimental results show that the proposed sTBI-GAN method can synthesize high-quality labeled sTBI images, which greatly improves the 2D and 3D traumatic brain segmentation performance compared with the alternatives. Code is available at .


Subject(s)
Brain Diseases , Brain Injuries, Traumatic , Humans , Learning , Brain Injuries, Traumatic/diagnostic imaging , Brain/diagnostic imaging , Image Processing, Computer-Assisted
19.
Adv Mater ; 36(4): e2310565, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991721

ABSTRACT

Perovskite chloride, an anion conductor, is a promising candidate to be a solid electrolyte for high-energy and sustainable chloride ion batteries (CIB). However, it suffers from poor structural stability at low temperature and in ambient conditions, which leads to its transformation from an ionic conductor to an insulator. Herein, a bismuth and chlorine dual doping strategy is developed to stabilize the cubic structure of CsSnCl3 in harsh environments. The as-prepared dual-doped CsSn0.9 Bi0.1 Cl3.1 material with an optimized composition maintains its cubic structure at the extremely low temperature of 213 K for 10 days and at 40% relative humidity for 50 days, while the undoped cubic material deteriorates and transforms to a monoclinic phase under these conditions in less than 1 day. Consequently, the dual doping achieves efficient chloride ion conduction that is superior to single bismuth doping due to the introduction of interstitial chlorine facilitating chloride ion transport. Importantly, the practicality of the as-prepared solid electrolyte is demonstrated in different symmetric solid cells and by various CIBs using the organic electrode couple, a multivalent metal chloride cathode, or a new high-voltage metal oxychloride cathode.

20.
Eur Arch Otorhinolaryngol ; 281(1): 237-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603052

ABSTRACT

PURPOSE: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited disorder that involves epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVMs). This study aims to investigate the genetic causes in a Chinese family with HHT. METHODS: HHT was confirmed according to Curaçao's diagnostic criteria. Three patients diagnosed with HHT and healthy members were recruited. Whole-exome sequencing (WES) and sanger sequencing were performed to define the patient's genetically pathogenic factor. RESULTS: The proband presented with recurrent epistaxis, hepatopulmonary arteriovenous malformation, and adenocarcinoma. A novel frameshift mutation (c.1376_1377delAC, p.H459Lfs*41) of the ENG gene was revealed in affected individuals by WES. There was no report of this variant and predicted to be highly damaging by causing truncation of the ENG protein. CONCLUSION: We report a novel variant in the ENG gene in Chinese that extends the mutational and phenotypic spectra of the ENG gene, and also demonstrates the feasibility of WES in the application of genetic diagnosis of HHT.


Subject(s)
Frameshift Mutation , Telangiectasia, Hereditary Hemorrhagic , Humans , Endoglin/genetics , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Epistaxis , Mutation , China
SELECTION OF CITATIONS
SEARCH DETAIL
...